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Abstract

A new technique for proving w-completeness based on proof transformations is presented.
This technique is applied to axiom systems for finite, concrete, sequential processes. It
turns out that the number of actions is important for these sets to be w-complete. For
the axiom systems for bisimulation and completed trace semantics one action suffices and
for traces 2 actions are enough. The ready, failure, ready trace and failure trace axioms
are only w-complete if an infinite number of actions is available. We also consider process
algebra with parallelism and show several axiom sets containing the axioms of standard
concurrency w-complete.

1 Introduction

An equational theory E over a signature X is called w-complete iff for all open terms ¢;,
to:

for all closed substitutions o : EF o(t;)=0(t2) & EFt =t,.

Not all equational theories are w-complete: a well known example is the commutativity
of the + in Peano arithmetic. Another example is the three-element groupoid of MURSKII
[13], who showed that for an w-complete specification of the groupoid an infinite number
of equations is necessary.

Also in process algebra several theories are not w-complete, and up till now this was
more or less ignored (exceptions are MILNER [11] and MOLLER [12]). But there are several
reasons why w-completeness should not be neglected. In the first place equations between
open terms play an important role in process algebra. For instance, processes are often
described with sets of (open) equations. A complete set of axioms (not necessarily w-
complete) gives no guarantee that such sets of equations can be dealt with in a satisfactory
manner. An example of this situation are the so-called ‘axioms of standard concurrency’
[2] in ACP, which had to be introduced in addition to the ‘complete’ set of axioms in
order to prove the expansion theorem [3]. The status of these axioms became clear only
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after MOLLER [12] showed that in CCS with interleaving, but without communication,
some of the axioms of standard concurrency are required for w-completeness.

Furthermore, w-completeness is also useful for theorem provers [8, 9, 15]. In [14]
the so-called method ‘proof by consistency’ is introduced which can be applied to show
inductive theorems equationally provable if w-completeness of the axioms has been shown.
In HEERING [6] it is argued that w-completeness is desirable for the partial evaluation of
programs. If P(z,y) is a program with parameters z and y, and = has fixed value c, then
the program P.(y) (=P(c,y)) should be evaluated as far as possible. In general this can
only be achieved if the evaluation rules are w-complete.

A more or less standard technique for proving w-completeness is the following: given a
set of axioms F over a signature X, find ‘normal forms’ and show that every open term is
provably equal to a normal form. Then prove that for all pairs of different normal forms,
closed instantiations can be found that differ in a model M for E. E does not necessarily
have to be complete with respect to M. This last step shows that the equivalence of
these instantiations cannot be derived from E. From this w-completeness of E follows
directly. We prove the w-completeness of the trace and completed trace axioms in this
way. This technique has some disadvantages. The proofs are in general quite long and
it is often difficult to find a suitable normal form.

In this paper we present an alternative technique that employs transformations of
proofs. It is explained in section 3. With this method proofs of w-completeness turn
out to be shorter and for the major part straightforward. Moreover, no reference to
a model is necessary. Unfortunately, this new technique cannot always be used. We
apply our method to five sets of axioms, which are taken from [4], for finite, concrete,
sequential processes. Among the proofs we give there is an w-completeness proof of
bisimulation semantics of which an earlier and longer version is given in [12]. It turns
out that the number of actions is important for the axiom sets to be w-complete. We
need an infinite number of actions for the ready trace, failure trace, ready and failure
axioms. For the bisimulation and the completed trace axioms at least one action is
required whereas for the trace axioms two actions are necessary. Then we study axiom
sets for finite, concrete process algebra with interleaving without communication (also
done in [12]) and interleaving with communication. We give straightforward proofs of
the w-completeness of these sets.

Acknowledgements. I thank Rob van Glabbeek for several fruitful discussions and
Alban Ponse for his detailed and constructive comments.

2 Preliminaries

Throughout this text we assume the existence of a countably infinite set V' of variables
with typical elements z,y,z. A (one sorted) signature & = (F,rank) consists of a set of
function names F, disjunct with V, and a rank function rank : F — N, denoting the
arity of each function name in F. T(X) is the set of closed terms over signature ¥ and
T(Z) is the set of open terms terms over L and V. We use the symbol = for syntactic
equality between terms. Furthermore, we have substitutions o,p : V — T(XZ) mapping
variables to terms. Substitutions are in the standard way extended to functions from
terms to terms. An expression of the form t = u (¢t,u € T(X)) is called an equation over
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z =g (reflexivity) %——z—%— (symmetry) :—BimL:y;—:—z (transitivity)

z; = y; 1 <1< rank(f)
f(ml:-":zrank(f)) = f(yla ---:yrank(f))

for all f € F (congruence)

Table 1: The inference rules of equational logic

3. The letter e is used to range over equations. An expression of the form

is called an inference rule. We call ey,...,e, the premises and e the conclusion of the
inference rule. Substitutions are extended to equations and inference rules as expected.

An equational theory over a signature ¥ is a set E containing equations over ¥. These
equations are called aztoms. An equation e can be proved from a theory FE, notation
E F e, if e is an instantiation of an axiom in E or if e is the conclusion of an instantiation
of an inference rule 7 in table 1 of which all (instantiated) premises can be proved. If
it is clear from the context what F is, we sometimes write only e instead of E e. We
write By - Ey if By e for all e € Ep. Notethatif EFt = u for t,u € T(X),thent=u
can be proved using closed instantiated axioms and inference rules only.

An equational theory E is w-complete if for all equations e: E F e iff E I g(e) for all
substitutions ¢ : V — T(Z). Note that the implication from left to right is trivial. So,
in general we only prove the implication from the right-hand side to the left-hand side.

3 The general proof strategy

Let © = (F,rank) be a signature and let F be an equational theory over £. We present a
technique to show that F is w-complete. Assume ¢ = t' is an equation between open terms
that can be proved for all its closed instantiations by the axioms of E. We transform ¢t = ¢/
to a closed equation by a substitution p: V — T(X) that maps each variable in ¢ and #'
to a unique closed (sub)term representing this variable. By assumption E F p(t) = p(t').
We transform the proof of this fact to a proof for E ¢t = t' by a translation R which
replaces each subterm representing a variable by the variable itself. This transformation
yields the desired proof if requirements (1), (2) and (3) below are satisfied. (1) says that
the translation of p(t) = p(t') must yield t = ¢’ (or something provably equivalent). In
general this only works properly if each subterm representing a variable is unique for
that variable and cannot be confused with other subterms. Requirements (2) and (3)
guarantee that the transformed proof is indeed a proof. This is most clearly stated in
equation (5), which is a consequence of (2) and (3).

e Foru=toru=1t"

Et+ R(p(u)) = u. (1)
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e For each f € F with rank(f) > 0 and u4, coes Upank( ) Ul s ...,u’mnk(f) €ET(X):
BU {w = u, R(s:) = R)[1 < i < rank(f)} F @)
R(f(u1, ..., Urank(5))) = R(f (v, “'1u'lrank(f)))'
e For each axiom e € E and closed substitution o : V — T(Z):

E | R(o(e)). (3)

Theorem 3.1. Let E be an equational theory over signature X. If for each pair of terms
t,t' € T(X) that are provably equal for all closed instantiations, there exist a substitution
p:V — T(X) and a mapping R : T(Z) — T(X) satisfying (1),(2) and (3), then E is
w-complete.

Proof. Let t,t' € T(X) such that for each substitution o : V — T(Z):

Etro(t)=0o(t'). (4)
We must prove that E ¢t = t'. This is an immediate corollary of the following statement:
Etu=4 foru,u' € T(Z) = E R(u)=R(). (5)

It follows from (4) that E | p(t) = p(t'). Using (5) this implies E F R(p(t)) = R(p(t')).
By (1) it follows that E ¢t = ¢'.

Statement (5) is shown by induction on the proof of E - u = u/. As u and u’ are closed
terms, we may assume that the whole proof of E - u = v’ consists of closed terms. First
we consider the inference rules without premises. There are two possibilities. In the first
case u = u' has been shown by the inference rule z = z, i.e. u = o(z) = v’ for some
substitution o : V' — T(X). Clearly, E + R(u) = R(u') using the same inference rule
and a substitution o’ : V — T(X) defined by o'(z) = R(o(z)). Otherwise, u = u' is an
instantiation o(e) of an axiom e € E. Using (3) it follows immediately that E F R(c(e)).

We check here the inference rules with premises. First we deal with the rule for
transitivity. So assume E F u = u' has been proved using E F u = u" and E
u"” = . By induction we know that there are proofs for £ + R(u) = R(u”) and
E + R(u") = R(u'). Applying the inference rule for transitivity again we have that E
R(u) = R(u'). The rule for symmetry can be dealt with in the same way. Now suppose
that E F f(u1, ..., Urank(s)) = f(u’l,...,u’mnk(f)) has been proved using E + u; = u}
(1 €1 < rank(f)). By induction we know that E + R(u;) = R(u}). Using (2), it follows
immediately that E b R(f(u1, ..., Urank(s))) = R(f(u1, ...,u:_mk(f))). O

This new proof strategy cannot always be applied. This is illustrated by the following
example.

Example 3.2. Suppose we have an axiomatization for the natural numbers with a
function maz giving the maximum of any pair of numbers. In the signature we have a
0, a successor function S and maz. The following set Em,. of axioms is easily seen to
be complete with respect to the standard interpretation.

maz(z,0) = z,
maz(0,z) =z,

maz(S(z), S(y)) = S(maz(z,y)).
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Clearly, Epmqz is not w-complete as for instance the general associativity and commuta-
tivity of maz is not derivable although each closed instance of them is.

It is impossible to use our technique to prove any extension of E, 4, w-complete. This
can be seen by considering the following two terms:

t; = maz(S(0),z) and
t2 = T.

We can see that these terms are not provably equal because with z = 0, the first term
is equal to S(0) and the second is equal to 0. Note that this is the only way to see the
difference. If any term that is not equal to O is substituted for =z then both terms are
equivalent.

Suppose we would like to apply our technique in this case. If we define p such that
p(z) = 0 then we must define the translation R such that R(0) = z. But then R(p(t;)) =
maz(S(z),z) which cannot be shown equal to maz(S(0),z). If p would be chosen such
that p(z) # 0 and R could be defined such that Emqee F R(t;) = t; (i = 1,2) then equation
(5), which follows from (2) and (3), cannot hold because it implies that Epqz F 1 = ta.

So, this example shows that the new technique is not generally applicable, but as
will be shown in the next sections, there are enough cases where the application of this
technique leads to attractive proofs.

4 Applications in finite, concrete, sequential process
algebra

In the remainder of this paper we apply our technique to prove completeness of several
axiom systems. In this section sets given for BCCSP in [4] are studied. BCCSP is a basic
CCS and CSP-like language for finite, concrete, sequential processes. It is parameterized
by a set Act of actions representing the elementary activities that can be performed by
processes. We write |Act| for the number of elements in Act (JAct|] = oo if Act has
an infinite number of elements). The language BCCSP contains a constant 8, which is
comparable to 0 or NIL in CCS and to STOP in CSP. We call é inaction or sometimes
deadlock. There is an alternative composition operator + with its usual meaning and,
furthermore, there is an action prefiz operator a : for each action a in Act.

In the sequel we will often use sums of arbitrary finite size. It is convenient to have a
notation for these. Therefore we introduce the abbreviation:

S ti=ti +..+t;,
i€l
where I = {i1,...,1,} is a finite index set and ¢; € T(BCCSP) (i € I). We take 3, ot; =
6. Note that this notation is only justified if + is commutative, associative. We only use
this notation when this is the case.
The depth |t| of a term ¢t € T(BCCSP) is inductively defined as follows:

|6] =0, |z]=0forallz €V,
la:t| =1+ |t| for all a € Act, |t1 + t2] = max(|t1], |ta])-

In table 2 we find several axiom systems corresponding to several semantics given in
[4]. We will investigate the w-completeness of these sets. On the top line of this table we



319

B|RT|FT|R|F|CT|T
z+y=y+z |+ |+ ||+
(z+y)+z=z+ (y+2) +|+ |+ |+ ]+ |+
T+z==C ++ |+ |+ F
c+b=g o IS U NS ) gy
(see (6) in text) + |+ |v|v| v ]V
a:z+a:y=a:z+a:y+a:(z+y) + v v |v

alb:z+u)+a:(b:y+v)=
a:(b:z+b:y+u)+a:(b:z+b:y+v) +|+]| v |V
a:z+a:(y+z)=az+a:(z+y)+a:(y+2) +| w |v
a:(b:z+u)+a:(c:y+v)=a:(b:z+c:y+u+v) + | v
a:z+a:y=a:(z+y) +

Table 2: Axioms for several process algebra semantics

find their abbreviations: B stands for Bisimulation, RT for Ready Trace, FT for Failure
Trace, R for Ready and F for Failure semantics, CT for Completed Traces and finally
T represents Trace semantics. The axioms that are necessary for ready trace semantics
(besides the axioms for bisimulation) are given by the following scheme:

a:(Za,—:z;+y)+a:(2ai:zi+y)=a:(Zai::z:i+y) (6)

i€l ieJ i€IUJ

where {a;|s € I} = {ai|t € J}, and z;,y € V (i € T U J). This scheme differs from
the axiomatization given in [4], where an additional function name I and a conditional
axiom were used to axiomatize ready trace semantics. We do not want to introduce these
concepts here. Both axiomatizations prove exactly the same open equations.

Let X stand for any of the semantics B,RT,... The symbol ‘v’ in a column of semantics
X indicates that an axiom is derivable from the other axioms valid for X. The symbol
‘+’ means that the axiom is required for a complete axiomatization of the models given
in [4] and ‘w’ means that the axiom is only necessary for an w-complete axiomatization.
It follows immediately that:

os)
3
e
v

Q
H
A {

-

where the semantics to the left are finer than the semantics to the right. The semantics
FT and R are incomparable [4]. The abbreviation for a semantics will also be used to
denote the set of axioms necessary for its w-complete axiomatization.

Lemma 4.1. Let t,u € T(BCCSP). If T+t = u, then |t| = |u].
Proof. Direct with induction on the proof of t = u. 0O
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As T+ B, T+ RT etc. it immediately follows from the last lemma that ‘X Ft = u =
[t] = |u|’, where X is any of the sets B, RT, etc.

4.1 The semantics B

We start considering the axioms for bisimulation semantics. If Act contains at least
one element, then B is w-complete. This fact has already been shown in [12] where a
traditional technique was used. Note that it makes no sense to investigate the situation
where Act = §, because in that case all closed terms will have the form 6, 6 +8, §+6+ ...
and therefore they are equal and we only require the axiom z = y for an w-complete
axiomatization.

Theorem 4.1.1. If |Act| > 1 then the axiom system B is w-complete.
Proof. As|Act| > 1, Act contains at least one action a. This action will play an
important role in this proof. We follow the lines set out in theorem 3.1. So, assume we
have two terms ¢,t' € T(BCCSP). Select a natural number m > max(|t|, |t']) and define
p:V — T(BCCSP) by:

p(z) = a™®™ . §

where a* : 6 is an abbreviation of k applications of a : to § and n : V — N\ {0} is a func-
tion assigning a unique natural number to each variable in z. Define R : T(BCCSP) —

T(BCCSP) as follows:

R(6) =6,

R(t +u) = R(t) + R(u),
R(b:t)=b:R(t)ifbF#aor|b:t|]#m -n(z)forallz € V,
R(a:t)=z if |a:t| =m -n(z) for somez € V.

We will now check conditions (1), (2) and (3) of theorem 3.1. We prove (1) with induction
on a term u € T(BCCSP) provided |u| < m. Note that this is sufficient as |t| < m and
[t'] < m.

R(p(8)) =6,

R(p(z)) = R(@™®)™ : §) =z,

R(p(u1 +u2)) = R(p(u1)) + R(p(u2)) = w1 +us,
R(p(b:u)) =b: R(pu)) =b:uif b#a,
R(p(a:u)) = R(a:p(u)) =*a:R(p(u)) =a:u.

=* follows directly from the observation that |a : p(u)| # m-n(z) for all z € V. In order
to see this, first note that 1 < |a : u| < m. If u does not contain variables, it is clear that
1< |a:p(u)| < m and hence, |a : p(u)| # m -n(z). So, suppose u contains variables. By
applying p to u each variable z is replaced by a™®™ : 6. So |a : p(u)| = p+ n(z) - m
where z is a variable in u such that there is no other variable y in u with n(y) > n(z)
and p (1 < p < m) is the ‘depth’ of the deepest occurrence of z in u. As 1 < p < m,
la : p(u)| # n(z) -m for each z € V.

Now we check (2). Assume B} u; = u} and B - R(u;) = R(u}) for ui,u; € T(BCCSP)
and 72 = 1,2. We find that:

BF R(u1 +uz) = R(w) + R(uz) = R(w;) + R(u3) = R(u] +u3).
BFR(b:uy)=b:R(u1)=b:R(uj)=R(b:uj)if b #a.
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BFR(a:w1)="a:R(u;)=a:R(u})=" R(a:u})
ifla:uy|#m-n(z) forallzceV.

=* follows directly from the condition. As B I u; = u} it follows that |a : u1| = |a : u}]
(cf. lemma 4.1) and hence, }a : u}| # m - n(z) for all x € V. This justifies =*.

BrR(a:uw)=z="R(a:u})if |a:u|=m-n(z) for somez € V.

It follows that |a : u{| = m - n(z) explaining ="*.

Finally, we must check (3). This is trivial as the axioms do not contain actions. We
only check the axiom z + y = y + z. The other axioms can be dealt with in the same
way. Let 0 : V — T(BCCSP) be a substitution, then:

B+ R(o(z +y)) = R(o(z)) + R(e(y)) = R(o(y)) + R(o(z)) = R(o(y + z)).

4.2 The semantics RT,FT,R and F

We will show that the sets of axioms RT,FT,R and F are all w-complete in case Act is
infinite. If Act is finite, we have the following identity:

a:Zai:5+a:(m+2ai:5)=a:(z+2a5:5) (7

ieJ ieJ ieJ

where {a;|i € J} = Act. Each closed instance of this identity is derivable from the axioms
of RT,FT,R or F. However, (7) is not derivable in its general form: if (7) were derivable,
then it would also hold if Act would be extended by a ‘fresh’ action b & {a:|i € J}.
Define a substitution o satisfying o(z) = b: §. Applying o to (7) yields:

a.:Za,-:6+a:(b:6+Zai:6)=a:(b:6+2a,-:5).

i€J i€J icJ

but this equation does not hold in the failure model [4]. Hence, it is not derivable from
F and therefore it can certainly not be derived from RT,FT or R.

So, in order to prove RT,FT,R and F w-complete, Act must at least be countably
infinite. The following theorem shows that this condition is also sufficient.

Theorem 4.2.1. If|Act| is infinite, then the axiom sets RT,FT,R and F are w-complete.
Proof. Take two terms ¢,t’. Define a substitution p : V — T(BCCSP) by:

p(z) =az: 6

where a_ is a unique action for each £ € V and e, must not occur in either ¢ or #.
Note that these actions can always be found as |Act| = co. Define R : T(BCCSP) —
T(BCCSP) as follows:

R(6) =6,
R(a:u)=a:R(u)ifa#a, foreach z € V,
R(ag : u) = z,

R(u1 + u2) = R(u1) + R(uz).
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Condition (1) of theorem 3.1 can be checked by induction on the structure of open terms
not containing action prefix operators a, :.

R(p(6)) = s,

R(p(z)) = R(ae : 6) =z,

R(p(a:u))=R(a:p(u)) =a: R(p(u)) =a:uasa#a;foreachz €V,
R(p(u1 +u2)) = R(p(u1)) + R(p(u2)) = u1 + ua.

Condition (2) can be checked in the same straightforward manner. Suppose X + R(u;) =
R(u!) for ui,u} € T(BCCSP) and < = 1,2. X may be replaced by either RT,FT,R or F.
Then:

XFR(a:u1)=a:R(u)=a:R(u)=R(a:uj)ifa#a, foreachz € V.
X+ R(az :u1) =z = Rlag : u}).
X F R(u; +u3) = R(w;) + R(uz) = R(u}) + R(uh) = R(u} + u3).

Finally, we check (3). We restrict ourselves to the ready trace axiom scheme. All
other axioms can be dealt with in the same way. First we assume that a = a,. Let
o : V — T(BCCSP) be a substitution. Then RT I

R(a. : (E a;:o(z;))+o(y)) +az: (Z a; :o(z:) +0(y))) =

i€l i€J
TH+zT ==
R(ae: (Y ai:o(z)+0()))

ieJuJ

In case a # a, for each z € V, we have that RT proves:

Ra: (Y ai:o(@)+o@)+a: (D ai:o@)+o()) =

i€l i€J
a: () R(ei:o(z:)) + R(o() +a: (D Rai:o(z:)) + R(e(¥) =
iel i€J
a:( ), @:R@)+ Y.  z+RE@)+
i€I\{iel|e;=a} z€{z|az=a;Ai€I}
a:( Y wiRe@E)+ Y. es+REE)="
i€J\{i€J|e;=an} z€{z|as=a;Ai€J}
a:( Z a; : R(o(z:)) + Z z+R(o(y))) =
ie(TUN\{i€IUJ|ai=a, } ze{zlap=a;Ni€]}
R(a : ( Z a; : o(z;) + o(y))).
i€eIVJ

=* follows from the observations that {a;|i € I, a; # a, for some z € V} = {aili €
J, ai # a; for some z € V} and {z|a; =a; A% € I} = {z|a; = a; A1 € J} which follow
directly from the fact that {a;|i € I} = {a;|i € J}. a

4.3 The completed trace axioms

We now show the w-completeness for the axiom set CT. However, it is not possible to use
the technique presented in the beginning. This will be shown in example 4.3.4. Therefore,
we will use a more traditional technique. Hence, it is necessary to explicitly define the
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completed trace semantics for BCCSP. In CT the meaning of a process is its set of traces
that end in inaction.

Definition 4.3.1. The interpretation [.Jor : T(BCCSP) — 24" (the set of subsets of
strings over Act) is defined as follows:

[tlcr = 0,
fa:tlor = {axs|s € [t]er} U {al|[t]cr = 8},
[t1 + toJor = [t1]er U [t2]cr.

We say that t1,ty € T(BCCSP) are completed trace equivalent, notation t; =cr tg, iff
[t:der = [t2]or.

Lemma 4.3.2. (Soundness) Let t,,t; € T(BCCSP):
CThty =ty = t; =cr to.
Proof. Straightforward using the definitions. o

For completed trace semantics the following theorem states the completeness of the ax-
ioms with respect to the given model. Moreover, as t; and t; may be open terms,
w-completeness is implied also.

Theorem 4.3.3. If |Act| > 1 then for all t,t, € T(BCCSP), we have that:
Vo :V — T(BCCSP) o(t1) =ct o(ts) = CTFt; =ts.

Proof. We skip the long and tedious proof of this theorem in which we had to use the
standard technique as shown by the next example. 0O

Example 4.3.4. Consider the following two BCCSP-terms.

ti=a:z+a:(a:6+z),
to=a:(a:6+z).

These two terms are clearly different in CT as for a substitution o with o(z) = 6, o(t1)
has a completed trace a which is not available in o(¢2). For every substitution o’ with
o'(z) # 6, 0'(t1) =cT 0'(t2). Hence, using the same arguments as in example 3.2, we
cannot apply our new technique.

4.4 The trace axioms

Again we do not use the new technique as in this case the ‘standard’ technique is more
convenient to use. We must give the trace semantics explicitly. In trace semantics each
process is characterized by its set of prefix closed traces:

Definition 4.4.1. The interpretation [.Jr : T(BCCSP) — 24" is defined as follows:

[6]r =9,
lo:t]r = {axolo € [t]r} U {a},
[t + t2]r = [ta]r U [t2]r-
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We say that t;,t; € T(BCCSP) are trace equivalent, notation t; =7 ta, iff [t:1]r = [t2]r.

Lemma 4.4.2. (Soundness) Let t1,t; € T(BCCSP):
Trti =t = t;=1ts.
Proof. Straightforward using the definitions. a

For trace semantics we need two actions in order to prove T w-complete. If |Act| = 1
then the following axiom is valid:

z+a:rx=a:c.

This can easily be seen by proving T F t+a :t =a : ¢t for all t € T(BCCSP) with
induction on ¢ if |Act| = 1. The axiom £+ a:z =a: z is in general not derivable from
T, because instantiating z with b: 6 yields b: 6 +a:b: 6 #7 a : b: 6§ where a,b € Act
are two different actions. In the next theorem we show that if |Act| > 2 then the axiom
set T is w-complete. First we define the notion of a syntactic summand. This notion is
only used in this section.

Definition 4.4.3. Let t,u € T(BCCSP). t is a syntactic summand of u, notation t C u
if:

et=a:t and u = a:t for some t' € T(BCCSP) or,

e u=1u; +us and t C uy or t C us.

Lemma 4.4.4. Let t;,t; € T(BCCSP). If for each syntactic summand v € T(BCCSP),
vt © ult

then BF t; = ts.

Proof. Straightforward. a

Theorem 4.4.5. If |Act| > 2 then for each t1,t; € T(BCCSP), we have that:

Vo:V — T(BCCSP): o(t1)=r0o(t2) = Tkt =t.

Proof. We use the abbreviation a; x...xa, : t with a; x...xa, € Act* foray :...:a, : t.
For s € Act*, we define |s| to be |s : 8], i.e. the length of trace 5. For traces s1, s, € Act*
we write 51 < sg if for some r € Act*, 81 *r = 83 or 81 = 83. In this case s; is a prefiz of
S9.

First we define a T-normal form, which plays a crucial role in this proof. A term
t € T(BCCSP) is a T-normal form if

tEZs;:E-{-Zs;:zi
iel ieJ

with s; € Act* (4 € I U J), satisfying:
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(1) for each s; (j € I U J) with |s;| > 1, there is a ¢ € I such that s; xa = s; for some
a € Act.

(2) for each s; (j € J) with |s;| > 0, there is a 1 € I such that s; = s;.

Fact 1. Let t € T(BCCSP). Then there is a T-normal form #' such that:

TFHt=1t.

Proof of fact. Straightforward with induction on ¢. O

Fact 2. Let t and t' be two T-normal forms such that for some w, u C t, w Z t' or vice
versa. Then there is a substitution ¢ : V — T(BCCSP) such that:

a(t) #r o(t').

Proof of fact. By symmetry it is sufficient to consider only the case where v C ¢ and
u [Z t'. We can distinguish between:

(1) w = s : 6 with s € Act*. Define o(z) = 6 for all z € V. Note that s € [o(t)]r-
Moreover, in this case it holds that s € [o(t')]Jr iff s : § C t'. Note that the
conditions (1) and (2) are required to prove this. Hence, as s: 6 £ t/, s & [o(¢')]r.

(2) w =5 :z for some z € V and s € Act*. Let m be a natural number such that
m > max(|t],|t']). Define o(z) = a™ : b : § where a,b € Act are two different
actions and o(y) = 6 if y # z. Clearly, sxa™ xb € [o(t)]r. We will show that
sxa™xb & [o(t')]r. Therefore we write t' = 3 . ;8: : 6 + 3 ;5 : yi in the
following way:

Zsi:6+Zs;:y;+25i:z+z.€,~:z+23i:z

i€l €K, i€K, i€EKs 1€K,
where

K = {iJi € J and y; # z},

Ky ={ili € J, y; =z and |s;| < |s]},
K3 ={ili € J, y; =z and |s;| = |s|},
Ky ={ili€ J, yi =z and |s;| > |s|}.

Note that J = K; U Ko U K3 U K4. We will show that s xa™ = b cannot originate
from any of these components. We deal with all five cases separately:
(a) For any 7 € [ ;c; 8i : 6]1, |r| < m and therefore r # s %xa™ xb.

(b) For any 7 € [¥;ck, si : o(yi)lr, |r| < m because o(y;) = 6. Hence, r #
sxa™ % b.

(¢) Forany r € [ ek, si:o(@)]r, Ir| <|sil +m+ 1< |s|+m+1=|sxa™«b|.
Hence, r # sxa™ % b.
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(d) For any r € [3;ck, 5i : o(z)]T, 7 < si xa™ xb for some 1 € K;. If |r| <
|s|+m+1, clearly, r # s xa™ % b. If || = |s| + m + 1, then 7 = 5; xa™ * b.
Ass:z Zt' s; # s Therefore r 3% sxa™ xb.

(e) Let for some r € Act*, r[4] be the i** symbol in 7. For any r € [,k si :
o(z)]r,r < sixa™xb forsome i € Ky. If |r| < |s|+m, then clearly r # sxa™xb.
If |r] > |s| + m, consider 7[|s| + m +1]. As [sixa™ xb| > |sxa™xb| > |5,
r[ls| + m + 1] = a. But, s xa™ xb[|s| + m + 1] = b. Hence, if |r| > |s| + m, it
also holds that » # s xa™ % b.

This finishes the proof of the second fact. O

Using both facts it follows almost immediately that T is w-complete with respect to =r.
Suppose t,t' € T(BCCSP) such that for each substitution o : V' — T(BCCSP), it holds
that o(t) =7 o(t'). Both t and ¢’ are provably equal to T-normal forms u and o' (fact 1).
If u and u' have different syntactic summands, then by the second fact p(u) #1 p(u') for
some substitution p : V — T(BCCSP). This is a contradiction. Hence, by lemma 4.4.4,
Bt u = v and therefore:

Trt=u=u =t

5 Extensions with the parallel operator

We extend the signature BCCSP with operators for parallelism.

5.1 Interleaving without communication

First, we study BCCSP with the merge and the leftmerge, but without communication.
The resulting signature is called BCCSP| . We will study BCCSP| in the setting of
bisimulation where |Act] = co. The upper half of table 3 contains a complete set of
axjoms. The completeness follows immediately from the completeness of the axiom set
B for BCCSP because any closed term over the signature BCCSP|| can be rewritten to
a term over the signature BCCSP.

In order to have an w-complete set of axioms, we add two new axioms (see the lower
squares of table 3). These axioms are derivable for all closed instances. Therefore they
are valid in bisimulation semantics. The complete set of axioms in table 3 is called B .
The following theorem concerns the w-completeness of B .

t+y=y+z zlly=zly+yla
(z+y)+z=z+(@y+2) |slz=6

z+z=zc a:zly=a:(z| y)
z+b==x z+y)lz=zlz+ylz
zlé=1=z zl(y | 2) = (zly)l 2

Table 3: The axioms for BCCSP with the leftmerge

Theorem 5.1.1. The set of axioms in table 3 is w-complete if Act contains an infinite
number of actions.
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Proof. Suppose two terms ¢,t' € T(BCCSP| ) are given. Define p: V — T(BCCSP )
by p(z) = az : 6 where a. is a unique action for each z € V and a. does neither occur n
t nor in t'. Define R : T(BCCSP| ) — T(BCCSP| ) as follows:

R(6) =6,

R(a:t) =a:R(t) where a # a, forallz € V,
R(a. : t) = zlL R(¢),

R(t +u) = R(t) + R(u),

R(t || w) = R(¢) || R(u),

R(tlu) = R(t)L R(u).

In order to show the axioms in table 3 w-complete we must check properties (1), (2) and
(3) of theorem 3.1.

(1) We show that By + R(p(v)) = v with induction on u € T(BCCSP| ), provided u
does not contain actions of the form a;.
R(p(z)) = zll6 ==,
R(p(8)) = 6,
R(p(t +u)) = R(p(t)) + R(p(v)) =t + u,
R(p(a:t)) = R(a:p(t)) =*a:R(p(t)) =a:t.
=* follows from the fact that a # a, forallz € V.

(2) For the +-operator the proof is straightforward: B U {R(t:) = R(u)|i = 1,2} F
R(t; +t2) = R(t1) + R(t2) = R(u1) + R(u2) = R(uj + uz2). The function names L
and || can be dealt with in the same way. The action prefix case is slightly more
complicated. R(t1) = R(u1) F R(a : t1) = a : R(t1) = ¢ : R(u1) = R(a : uq) if
a # ag for all € V. In the other case R(t;) = R(u;) - R(ag : t1) = zlLR(¢;) =
zlL R(uz) = R(a; : uy).

(3) It is straightforward to check the axioms that do not explicitly refer to actions.
Here we only check the axiom a : zlly = a : (z || y). Let 0 : V — T(Z) be
defined such that o(z) =t and o(y) = u. By F R(a: tlu) = a : R(t)LR(u) =
a: (R(t) || R(u)) = R(a : (t || u)) if a # az for all z € V. In the other case
By F R(az : tlu) = (zlL R(t))L R(u) = zL (R(?) || R(u)) = R(ac : (t || w))-

a

In many cases it is easy to show the w-completeness of the axioms of new features
introduced in BCCSP|| . As examples we introduce the silent step 7 into BCCSP|| and
we will consider BCCSP|| in trace semantics.

Example 5.1.2. We add a constant 7 (the silent step or internal move) to BCCSP| .
The new signature is called BCCSP'l'L. The internal step has been axiomatized in different
ways. In [10] 7 is characterized by three 7-laws. This characterization is often called weak
bistmulation.

a:7:z = a:z,
T:Z+zT = T:'9Z,
a:(r:z+y) = a:(r:c+y)+a:z.
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If one adds these laws to B, obtaining Bﬁ_, we have to add the following two axioms in
order to make B] w-complete. Axioms of this form already appeared in [7].

zlr:y = =zly,
zl(r:y+2) = zll(r:y+2)+zly.

Both new axioms are derivable for all closed instances, and therefore valid in any model
for Bﬁ.
In [5] 7 is axiomatized by the single equation:

a:(t:(z+y)+z)=a:(z+y).

This variant is called branching bisimulation. The set Bll.’ together with this axiom is
called Bﬁ_. The single axiom:

zl(r: (y+2)+y) =zl(y+2)

suffices to make BIEL w-complete. This axiom is derivable for all closed instances, and

therefore it holds in any model for B’I]_.

We do not give the w-completeness proofs as they can easily be given along the lines
of the proof of theorem 5.1.1. In fact it suffices to only check condition (3) for the new
axioms, because conditions (1) and (2) are provable in exactly the same way.

Example 5.1.3. Here we study the w-completeness of BCCSP| in trace semantics.
As any term over the signature BCCSP|| can be rewritten to a term over the signature
BCCSP by the axioms in B|, and T is complete for the signature BCCSP in trace
semantics, By u T is complete for BCCSPLL in trace semantics. For w-completeness we
must add the equation:

zly+zlz=zl(y+2),

which is derivable from BIL UT for all its closed instances. The proof of this fact follows
the lines of the proof of theorem 5.1.1.

5.2 Interleaving with communication

In this section the signature BCCSP is extended with the merge, the leftmerge and the
communication merge (|). The signature obtained in this way is called BCCSP|. Its
properties are described by the axioms in table 4 which are taken from [2]. We have
an additional associative and commutative operator |: Act X Act — Act on actions. We
assume that Act is closed under |. In fact (Act,|) is an abelian semigroup. The axioms
in the upper two squares of table 4 combined with the condition that | on actions is
commutative and associative, are already complete for BCCSP|-terms in the bisimulation
model. This can again easily be seen by the fact that any term over the signature BCCSP,
can be rewritten to a term over BCCSP. For BCCSP the four axioms in the left upper
corner of table 4 are complete in the bisimulation model. The axioms in the lower squares
are necessary for an w-complete axiomatization. We call the axiom system in table 4 B,.

Example 5.2.1. The following facts are derivable from B|. We leave the proofs to the
reader.
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rt+y=y+z
(z+y)+z=z+(y+2)
r+zr==z
r+b=1z
clly=zly+yle+z|y |z|y=y|=
arzly=a:(z|y) a:z|biy=(ald):(z]y)
Slz=46 §lz=6
(e+y)lz=zllz+ylz (z+y)]|z=z|z+y]|=
(zly)lz==2zl(y |l 2) (zly)lz==z]|(y]2)
zlé==z z|(ylz) =(z|y)lz

Table 4: The axioms for BCCSP,

clly=yl =,

@lly)llz==] (¥ 2)

(a1 ] ... | (@i ] aiv1) | ] an) iz =(a1]...]| (@it1 | @i) | ... | an) : =,

(a1)| oo | (@i@iry | air2)) | oo | an) t 2= (a1 | .o | ((ai | @ip1) | @ig2) | . |

The last two identities show that it is not necessary to include axioms for the commuta-
tivity and the associativity of | on actions in B.

Theorem 5.2.2. B, is w-complete if Act contains an infinite number of actions.
Proof. This proof has the same structure as the proof of theorem 5.1.1. We will only
give the non-trivial steps of the proof. Suppose two terms t,t' € T(BCCSP)) are given.
Define p : V — T(BCCSP)) as follows:

plz) =a: 6

where a, is unique for each z € V and actions a, do not occur in t or t'. We define

R : T(BCCSP,|) — T(BCCSP)) by:

R(8) =6,

R((a1|..-lan):t)=(a1]...lan) : R(t)ifa; #a.for1<iLnandz €V,
R(a, : t) = zlL R(2),
R((az|ai|..lan):t)=
R((a1 | a2 | ... | @an) : t)
az forallz €V,

R(t +u) = R(t) + R(u),
R(t || u) = R(?) || R(u),
R(tlu) = R(t)L R(u),
R(t| u) = R(t) | R(u).

For p and R we now check properties (1), (2) and (3) of theorem 3.1.

z|R((a1]...|an) :t) forn >1,
= R(az | ... | an | @1) : t) for n > 2 provided a; #

(1) Straightforward. In this step the axiom zll§ = z plays an essential role.

(2) Straightforward for almost all cases, the only exception being the action prefix
operator (a; | ... | an) : = where for some a; (1 < 7 < n), ai = a. with
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z € V. Assuming that B| F R(t) = R(u) for t,u € T(BCCSP)), we show that
B/ R((a1] ... | ar) : t) = R((a1 | ... | an) : ).

R((a1 I | a,._) : t) =

(@) z; | (| (s | (@ | - | anr) : R(E)))...) =
zj | (| (2 | ((ar | ... | air) - R(w)))-. )=
R((ay]|...| ar) : u) if there is a 1 < i < n such that a; # a; forallz € V.

(b) 21| (.. | (@n-1 | (z=LR(2)))...) =
z1 | (... | (@n=1 | (z2LR(w)))...) = R((a1 | ... | @n) : u), otherwise.

(3) Only the axioms containing occurrences of the action prefix operator are non trivial
to check. So we consider the axioms a : (zlly) =a: (z||y)anda:z|b:y =
(@]b):(z]| y). We start off with the first one. Let a = (a1 | ... | an) and let o
be a closed substitution such that o(z) = ¢ and o(y) = u. Three cases must be
considered.

(a) ai#azforalll1<i<mandz€eV.
BiF R(a:tlu) =a: R(t)LR(u) =a: (R(t) || R(u)) = R(a : (¢ || w)).
(b) a;=a,, foreach 1<i<nandz; €V.
R((a1| ... | an) i tlu) =
(z1] (. ] (@n-1 | (zoLR(Y)))..))LR(u) =
((@1] .| Za-1) | za) LR(t)) LR(u) =
((21 ] | @a-1) [ 2a) L(R() || R(u)) =
(@1 | (- | (@no1) | [(zalL(R(2) || R(w))))...)) =
R((a1 | ... | an): (¢ u)).
(c) For some 1 <7< n,a; # a; forall z € V and for some 1 <1 < n, a; = a,.
R((ay | ... | an) : thu) =
(@j | (o | (257 | ((@ry | o | @rr) 2 R(2)))...)) LR(u) =
(@j || z37) | ((@ky | - | @n) : R(E)LR(u)) =
(2; | . lz5) | ((ar | ... | aw) s (R(t) || R(w))) =
zj | (- [ (25 | ((ak | - | @w) : (R(E) || R(w))))...) =
R((ay | ... | an): (¢ ]| u)).

We now check the axioma:z |b:y = (a|b): (z | y). We can distinguish 9 cases
(cf. checking the axiom a : zlly = a : (z || y)). We will not discuss all of these,
but restrict ourselves to the case where some of the actions, but not all, in ¢ and b
have the form a..

R(a itlbiu) =

(g, | (o | (230 | (kg | oo [ arg) 2 B($)-D) | (95, | (oo | (ygg | (o | e |
by;) : R(u))...)) =

(@ | oo 1230 | W30 | oo L0 | (o | o [ aig) = RCE) | (B | oo | Bay) :
R(u)) =

(g | Coo | (i | (g | CGoo | Qg | ((aky | o ] arg) | (Biy | oo | Bag))

(R(2) || R(w)))--)).-)) =
R((ar | - | an | b1 ] [ba) 2 (¢ || w))-
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In the last step we used example 5.2.1 to rearrange the actions.
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